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Abstract. The conjugate gradient squared (CGS) algorithm is a Krylov subspace algorithm that
can be used to obtain fast solutions for linear systems (Ax = b) with complex nonsymmetric,
very large, and very sparse coefficient matrices (A). By considering electromagnetic scattering
problems as examples, a study of the performance and scalability of this algorithm on two MIMD
machines is presented. A modified CGS (MCGS) algorithm, where the synchronization overhead
is effectively reduced by a factor of two, is proposed in this paper. This is achieved by changing
the computation sequence in the CGS algorithm. Both experimental and theoretical analyses
are performed to investigate the impact of this modification on the overall execution time. From
the theoretical and experimental analysis it is found that CGS is faster than MCGS for smaller
number of processors and MCGS outperforms CGS as the number of processors increases. Based
on this observation, a set of algorithms approach is proposed, where either CGS or MCGS is
selected depending on the values of the dimension of the A matrix (N) and number of processors
(P). The set approach provides an algorithm that is more scalable than either the CGS or MCGS
algorithms. The experiments performed on a 128-processor mesh Intel Paragon and on a 16-
processor IBM SP2 with multistage network indicate that MCGS is approximately 20% faster
than CGS.

Keywords: algorithm scalability, conjugate gradient squared, modified conjugate gradient squared,
Intel Paragon, IBM SP-2, MIMD, synchronization.

1. Introduction

This is an application-driven study of solutions to linear systems of equations
(Ax = b) on MIMD parallel machines. The application being considered is the
finite element method (FEM) modeling of open-region electromagnetic problems in
the frequency domain [7, 8]. The matrices obtained in this problem are very large,
very sparse, nonsymmetric, and have complex-valued elements.

For the 2-D physical examples considered, first-order (linear) node-based func-
tions over triangular elements are used. The resulting A matrix is unstructured,
with the non-zero entries dictated by the global node numbering. The correspon-
dence between the node numbering and the sparsity pattern of A is illustrated in
Figure 1 for a simple 2-D mesh. Figure 1(a) shows the connectivity among the
nodes of the mesh and Figure 1(b) shows the sparsity pattern of the resulting A
matrix. Note that while the sparsity pattern of A is symmetric, the actual matrix
element values are not. In contrast, quadrilateral elements, which are commonly



used in finite difference representations, result in a structured, multi-diagonal A
matrix. Triangular elements provide greater flexibility in the representation of the
geometry, but create the need for solution procedures that do not rely on an multi-
diagonal A matrix. A similar A matrix will result for any wave equation problem
that is described by a differential equation. The challenge is to be able to solve
very large order problems effectively.
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Figure 1. A simple 2-D mesh and the corresponding portion of the A matrix.

The conjugate gradient squared (CGS) algorithm [14] is used for the solution of
the linear system. This algorithm can provide fast solutions, even though the con-
vergence pattern is often non-uniform. This study focuses on the performance and
scalability of this algorithm on MIMD machines. Synchronization and communi-
cation are two factors that introduce significant overhead when this algorithm is
implemented on a parallel machine. The communication overhead is dependent on
the structure of A, i.e., the sparsity pattern of A. Therefore, matrix reordering
techniques can be used to reduce this overhead. The synchronization overhead de-
pends on the number of vector-vector inner products performed per iteration of the
algorithm. For MIMD machines, the synchronization cost rises significantly with
increasing machine size. Hence, for scalable MIMD implementations, the amount
of synchronization has to be minimized.

This paper proposes a modified CGS (MCGS) algorithm where the synchroniza-
tion overhead is effectively reduced by a factor of two. This is achieved by changing
the computation sequence in the CGS algorithm. An approximate theoretical com-
plexity analyses and experimental studies have been done to investigate the impact
of the modification on the overall execution time of the CGS algorithm. The ap-
proximate complexity analyses using a mesh-connected model indicates that for
larger machine sizes the performance of the MCGS algorithm may be up to 34%
better than that of the CGS algorithm, depending on the machine architecture. For
smaller matrix sizes, CGS performs better than MCGS. The experimental studies
on a 128-processor Intel Paragon reveals that MCGS is at least 20% better than



the CGS for larger number of processors. The experiments are also performed on
a 16-processor IBM SP2.

Because neither algorithm is better than the other for all values of input data sizes
and system parameters, a set of algorithms approach is presented (e.g., [13, 18]).
This provides a scalable solution scheme for Ax = b. Conditions for choosing a
particular algorithm depending on input data and system parameters are also pro-
vided. Conditions such as the one developed here to choose between CGS or MCGS
depending on the system parameters are also useful in the area of heterogeneous
computing (HC) mapping systems [9]. In HC mapping, the input data (e.g., matrix
size) remains fixed, but the system parameters are varied, i.e., the mapping system
estimates the performance on different machines and executes the application on
the machine that is expected to yield the best performance. To obtain the best
mapping, it is necessary for the HC mapping systems to have information such
as those provided by the conditions to select either MCGS or CGS depending on
system parameters.

The solution of Ax = b is a time consuming step in the FEM modeling of many
problems from diverse areas such as fluid dynamics, structures, and atmospherics.
Therefore, a lot of work has been done in designing iterative algorithms and their
parallel implementations for solving Ax = b. Some of the widely used iterative
algorithms are the Krylov subspace algorithms. In general, these algorithms provide
fast and robust solutions for Ax = b.

Dazevedo et al. [3] developed two reformulations for the conjugate gradient (CG)
algorithm that reduce the synchronization overhead associated with the parallel
implementations of the generic CG algorithm. Meurant [10] and Saad [11] also
discuss the reduction of the synchronization overhead in the parallel implementa-
tions of the CG algorithm. The CG algorithm is applicable for symmetric positive
definite (SPD) A matrices. The work presented in the following sections extends
these ideas to reduce the synchronization overhead in the CGS algorithm, which is
applicable to nonsymmetric A matrices.

In Section 2, the open-region electromagnetic problem is briefly examined. Gen-
eral strategies used for solving linear systems with complex elements are discussed
in Section 3. The machine model and the notation used to parameterize the al-
gorithms are presented in Section 4. Section 5 examines the issues involved in
parallelizing some of the basic linear algebra subroutines needed for implementing
a Krylov algorithm. A modified CGS algorithm is provided in Section 6 and this
algorithm is compared with the CGS algorithm in Section 7. In Section 8, the
experimental results are presented.

2. Problem Definition

This section is a brief overview of the physical problem. See [7, 8] for details.
Progress in micro-machining of optical diffractive elements has sparked an inter-

est in the study of wavelength and subwavelength structures in the last few years.

A rigorous modeling of these devices demands the solution of the underlying elec-



tromagnetic equations. The FEM is used here to discretize the wave equation. The
resulting set of linear equations then needs to be solved.

Consider a scalar wave equation for a 2-D problem with a time dependency e/*!
for the fields. Let u be the total, unknown, complex-valued scalar field, g be the
magnetic or electric source inside the computational domain, and kg be the wave
number in free space. Also, let p be the material permittivity, ¢ be the material
permeability, €9 be the permittivity of the free space, and pg be the permeability
of the free space. The scalar wave equation in the frequency domain is

V- (pvu)+kqu=yg, (1)

1

with k% =w’no €0, u=H., p=c¢, and ¢ =y,

for transverse electric (TE) polarization or u = E., p = pu, "

and ¢ = ¢, for transverse magnetic (TM) polarization.

A general open-region electromagnetic scattering problem with an artificial bound-
ary 0X) for TM polarization is shown in Figure 2, where the superscript inc denotes
the incident field components, the superscript tot denotes the total field compo-
nents, the superscript s denotes the scattering field components, and pec denotes
a perfect electric conductor. Let B; represent the basis functions and D, D5, and
D3 be coefficients that originate from radiation boundary conditions or absorbing
boundary conditions at the outer boundary [8]. Furthermore, let u™¢ denote the
incident field. Then, the discretization of the corresponding variational formulation
results in a system of linear equations:

Ax=b (2)

with A;; and b; represented by

Aij = / /{pVBi'VBj—kquiBj +gB,'}dS
Q

B 0B;
auinc ine auinc aZuinc
bi = ngBl< an —Dl'u, _D2a—m_D3 W) dm (4)

The A matrix is of size N [7], corresponding to the number of free variables (number
of unknowns) within the domain. Because of the local linear expansion and testing
functions, the A matrix typically has a fill factor less than one percent.

3. Linear Equation Solution

Various approaches are used in the literature for solving linear systems with complex
coefficient matrices [5]. One approach is to premultiply Ax = b by the hermitian
matrix A (AH = (A*)T) [15], which is also known as the normal equations
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Figure 2. General scattering problem in unbounded region: artificial boundary 02 and different
field components for TM polarization.

method. This results in a linear system Ax = b, where A = A#A and b= Afb.
A has real-valued elements and b can have complex-valued elements. Because A
is real, the system can be split into two systems of equations:

A2 =[]

For some A matrices this method can be very efficient, e.g., when A is close to
unitary (A¥ A ~ I). However, the normal equations method often leads to systems
with poor convergence properties. This is due to the condition number of A being
approximately the square of the condition number of A. For many complex coef-
ficient systems that occur in practical applications, the normal equations method
has been observed to be inefficient [5] and so is not considered in this study because
of the structure of the A matrix involved.

Another approach is to split the complex system into real and imaginary compo-
nents:

A [t | = [ty e a = [T0R) 7R) ©

This process doubles the size of the coefficient matrix on each dimension, i.e., if A
is N x N then the resulting coefficient matrix, A*, is 2N x 2N. This method is not
very efficient, because the spectral properties of the resulting coefficient matrix are
less suitable for Krylov iterative methods than that of the original matrix [4].

Hence, in this study, real Krylov iterative algorithms are adapted to solve complex
linear systems. Although the overall algorithm remains the same, there are changes
to the basic operations such as the inner products.



4. The Machine Model and Terminology

The analysis of algorithms presented in this paper is based on the distributed
memory MIMD machine model. The machine has P processors and each processor
is paired with a memory module to form a processing element (PE). The PEs are
connected by an interconnection network. In the experiments reported here, all
PEs execute the same code, i.e., the single program multiple data (SPMD) model is
used. The PE’s memory is used to store both instructions and data. If a PE needs
data stored in a remote PE then it is retrieved by message passing.

The algorithm complexity analysis performed in the next section is for a mesh-
based distributed memory MIMD machine model. To simplify the analysis and
parameter measurement, the communication operations on the Intel Paragon are
modeled without considering the wormhole routing [2] that is used in the Paragon.
The computation is modeled by counting the floating point operations (FLOPs) at
the source code level (the C language is used). The following notation is used in this
paper: (1) P: number of PEs, (2) N: dimension of the A matrix, (3) k: number of
non-zero elements per row of the A matrix (for the 2-D problems considered in this
paper the maximum value of k is 8), (4) ts,: time for a floating-point operation (at
the source code level), (5) ts: setup time for message passing, and (6) t,,: time to
transfer a single word between two PEs.

5. Krylov Algorithms on Parallel Machines

Krylov subspace algorithms are fast and robust for the solution of unstructured
and nonsymmetric matrix problems. One of these Krylov techniques, the conjugate
gradient squared (CGS) algorithm [14], which can be directly applied to complex
matrices, is used in the experiments reported here. The CGS algorithm for the
solution of the linear system Ax = b is shown in Figure 3. An initial guess for
the solution vector xg and an arbitrarily chosen vector ry such that f‘éf ro # 0 are
input to the algorithm, in addition to the vector b and the sparse matrix A. The
convergence criterion is based on the error measure, e,,.

All Krylov algorithms require a basic linear algebra subroutine kernel that imple-
ments vector-vector operations, vector inner products, and matrix-vector multipli-
cation. The vector inner product and matrix-vector multiplication operations need
inter-PE communications on a distributed memory parallel machine. The A matrix
is represented using a parallel version of the modified sparse row format [12]. In
this format, each row of the matrix is represented as a variable length array. Each
element of this array is a record containing an element of A and the corresponding
column index.

For simplicity, assume that the matrix dimension NV is a multiple of P. Let the
A matrix and the vectors be distributed over the PEs in row striped format, where
each PE gets N/P contiguous rows, as shown in Figure 4; in particular, PE i gets
rows (N/P)i to (N/P)(i + 1) — 1. With the data distribution given in Figure 4,
any element-wise vector-vector operation can be performed concurrently by all PEs



) To=b—-Ax¢;q=p-1=0;
) po1=1;n=0; po = Ffro;

)  while ( not converged ) do

) 8= pn/pn—l;

) u, =r, + ﬁqn;

) pn:un+ﬂ(qn+ﬁpn71);
) Vi = Apy;

) 0 =Ffva; @ = pp/o;

) An+1 = Up — QVp;

0) fn+1 = U, + Qn+1;

1) rpt1 = rp — aAf, 11
2) Xpt+1 = Xp + afn+1;

3) n=mn+1;

4) Pn = f'(I)L]I'nQ €n = I'nHI'n§
5) endwhile

Figure 3. The conjugate gradient squared (CGS) algorithm.

without inter-PE communication. Let the time for an element-wise vector-vector
operation be t,,p,. For the row striped format,

N

tuon = (5010

(7)

Figure 4. Distribution of the A matrix and vectors under the row striped format.



For the inner-products, the evaluation is done in two phases. In the first phase,
each PE computes a local inner product on its N/P elements. Because each PE
has N/P elements and for each element a multiplication and addition operation
are performed, for 7 local inner products the computation time is 2((7N)/P)tsp.
In the next phase, the local inner products are combined to form a global sum.
The time taken for this phase is dependent on the interconnection network used by
the parallel system. In the Intel Paragon, the PEs are organized in a vP x v P
mesh. Figure 5, shows one way to perform the combining sequence for a sum-to-
one-PE operation in a 4 x 4 mesh (without the wormhole routing). The labels on
the arrows are step numbers (e.g., 0 indicates the transfers performed in the initial
step). Once the sum is accumulated in a single PE, it is distributed to all the
PEs. This distribution is performed by reversing the sequence of operations used
to obtain the sum at one PE. Hence four more steps are required to distribute the
sum back to all PEs.

© ° -0 -0
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Figure 5. An example global summing sequence for a 4 x 4 mesh.

In general, for a VP x /P mesh, the global summing and distribution can be
performed in 2v/P steps, where each step takes (t, + mt,). Therefore, on the
Paragon the combining phase to form the global sum takes 2(t, + 7t,,)v/P. Let the
time for 7 vector inner-products be t;,ne- (), which becomes

tinner (1) = 25 )t 4 2(ts + 71) V. ®)

The time taken for a matrix-vector multiplication operation depends on the spar-
sity pattern of the A matrix. Consider the situation when A has an unstructured
sparsity pattern and is distributed among the PEs using the row striped format of
Figure 4. The shaded square in Figure 4 represents those elements of A in rows
(N/P)i to (N/P)(i+1) — 1 and columns (N/P)i to (N/P)(i + 1) — 1. To perform
the matrix-vector multiplication operation Ax, PE i needs the values of row r of
x if column r of any of rows (N/P)i to (N/P)(i +1) — 1 of A contains a non-zero
element. Thus, given PE i contains rows (N/P)i to (N/P)(i + 1) — 1 of x, PE



t needs to perform an inter-PE communication for each column j of A that has
at least one non-zero element and (N/P)(i +1) < j or j < (N/P)i (i.e., for all
non-zero elements of A that are in PE i and lie outside the shaded area in Figure
4). Because A is unstructured, PE i could potentially need elements of x from all
other PEs to perform the matrix-vector multiplication.

For the complexity analysis, the worst-case situation of PE i needing x vector
elements from all other PEs is considered. Therefore, an all-to-all broadcast of the
x vector elements is required before each matrix-vector multiplication operation.
In a 2-D mesh network of PEs, the all-to-all broadcast can be performed in two
phases. In the first phase, each PE broadcasts its N/P elements of the x vector
along the columns of PEs of the 2-D mesh. This operation requires v/P — 1 steps
and each step takes t; + (N/P)t,, time. At the end of this phase, each PE will
hold (N/P)v/P = N/v/P elements of the x vector. The next phase is similar,
but the broadcast is performed along the rows of PEs of the 2-D mesh and each
PE sends the N/v/P elements it currently holds. The time taken for the second
phase is (t; + (N/V/P)ty,)(V/P — 1). Therefore, the total communication time is
tmeomm = (ts + (N/P)ts) (VP — 1) + (ts + (N/v/P)ts)(VP — 1). The computation
time per row of the A matrix is k¥ multiplications and k£ — 1 additions, thus, for the
whole matrix the computation time t,,comp = (2k — 1)(N/P)tsp. From the above
results, the time for matrix-vector multiplication for an unstructured A matrix is
tumuie (unstructured multiplication):

tumult = tmcomp + tmcomm
N N(P - VP)t
= (2k—1)(—)tfp+2ts(\/l_3—1)+(—\/_)w. (9)
P P
For large P,
N
tumute = (2k = 1)(5)tpp + 2tsV'P + Nt,,. (10)

The analysis of the algorithms provided in this paper assumes a large value for P,
the number of PEs.

The unstructured A matrix can be structured to obtain a reordered A matrix
with a banded sparsity pattern. Let the reordered A matrix have an odd bandwidth
of B (ie., a;; = 0 for |i — j| > |6/2]), then PE i needs to communicate with PEs
that are numbered in the range [i — [|3/2]/N/P]...i+ [|8/2]/N/P]] to obtain the
necessary x vector elements to perform the matrix-vector multiplication. Instead
of performing a broadcast operation to retrieve the x vector elements before every
matrix-vector multiplication, for the banded A matrices, send and receive type
communications are used. Hence, the banded structure of the reordered A matrix
reduces the communication time spent in retrieving the necessary x vector elements,
but the time spent on computation remains the same as the unstructured case.

For very large and very sparse reordered matrices such as those encountered in
the application that is considered here, 8 is such that (8P)/N < c for a small
constant c¢. For the reordered matrices and the number of PEs considered here, ¢
is equal to two (i.e., PE 7 needs to perform inter-PE transfers with PEs ¢ — 1 and



10

i+ 1). If 8 does not satisfy this condition, then reordered A is considered to have
an unstructured sparsity pattern and broadcast operations are used instead of the
send and receive calls to retrieve the x vector elements.

The total multiplication time for this case is called ¢pu: (banded multiplication),
which is given by

N
tomuit = (2k — 1)(?)% + 2ty + Bty. (11)

The parameters derived above are used to obtain expressions for the parallel run
time per iteration.

The amount of work done per iteration of the algorithm is approximated by the
body of the “while” loop (in Figure 3 for example), i.e., the initialization overhead
prior to loop entry is considered negligible. In the CGS algorithm of Figure 3, it
can be observed that for each iteration of the “while” loop three inner products
and two matrix-vector multiplications are required. Two of the inner products can
be performed with a single global summing operation, i.e., the local inner products
corresponding to the two inner products in Line (14) of Figure 3 can be reduced
in a single global operation (with two operands). Vector-vector additions, vector-
vector subtractions, and vector-scalar multiplications are also needed to implement
the algorithm. However, these operations are completely parallelizable, i.e., no
inter-PE communication is involved in a distributed memory machine.

The following expressions for the parallel run time of the CGS algorithm are
derived assuming a data distribution as described in the beginning of this section.
Table 1 shows the line by line time complexity of the CGS algorithm. Note that
only the expressions within the while loop are considered here.

Table 1. Line by line time complexity
of the CGS algorithm

line number time complezity
(4) tip
(5) 2(N/P)tsp
(6) A(N/P)tsp
(7) lmult
(8) tip + tinner(1)
)

2(N/P)tsp
(10) (N/P)tsp
(11) tmute + 2(N/P)tsp
(12) 2(N/P)tsp
(13)

(14)

trp
tinner (2)
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Let the time taken for the ith iteration of the CGS algorithm be tf . An
expression for the value of ¢4 can be obtained by counting the different types of
operations performed per iteration of the CGS algorithm. Therefore,

13N

tiCGS = (3 + ?)tfp + tinner(l) + tinner(2) + thult: (12)

where the (3 + 13N/P)t, term comes from Lines (4), (5), (6), (8), (9), (10), (11),
(12), and (13), the tiuner(1) term comes from Line (8), the tiuner(2) term comes
from Line (14), and the 2¢,,,;; term comes from Lines (7) and (11) of Figure 3.
The number of PEs that result in the minimum parallel execution time, Pogg, can
be derived by solving for P in (9tL..g)/(0P) = 0.

If A has an unstructured sparsity pattern, then Equation (12) can be simplified
by substituting the value of ;e from Equation (8) and the value of ¢y for
tmut from Equation (10). For an unstructured A matrix, let the time per iteration
of the CGS algorithm be t4 g .-

i 17+ 4k)Nt
tas.u = (8ts +6tw)VP + % + 3tsp + 2Nty (13)

The number of PEs that result in the minimum parallel execution time, Pogs_v,
can be derived as the following by solving for P in (9t& g )/ (0P) = 0.

(17 + 4k)Ntfp>2/3 14

Foes = < Aty + 3t

Similarly, for a reordered A (obtained by reordering the unstructured A) with a
bandwidth of 3, let the time per iteration of the CGS algorithm be t,¢ , and the
number of PEs for minimum parallel execution time be Pogs_p. A general expres-
sion for the time taken per iteration of the CGS algorithm is given by Equation
(12), i.e., the expression is applicable for reordered or unstructured A matrices. The
only parameter in Equation (12) that depends on the structure of the A matrix
is the t,,u¢ term. By substituting the value of ¢4, given by Equation (11) into
Equation (12) an expression for tiCG 5 p can be obtained. Therefore, from Equations
(8), (11), and (12):

(17 + 4k)Nty,

thasy = (4ts +6t,)VP + 5

+ 3tgp + 4t + 2Bty (15)

The number of PEs that result in the minimum parallel execution time, Pogs_p,

can be derived as the following by solving for P in (8t&qg ,)/(0P) = 0.
2/3

(17+4k)Ntfp> / (16)

P =
casb < 2ts + 3ty
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6. The Modified CGS (MCGS) Algorithm

In Figure 3, The element-wise vector-vector, vector-scalar, scalar-scalar, and matrix-
vector operations that follow the inner products in Lines (8) and (14) depend on
the values generated by the inner product operations. Therefore, the operation in
Lines (8) and (14) form two distinct synchronization operations per iteration of the
“while” loop. Depending on the values of N and P, the synchronization overhead
can cause a significant impact on the actual execution time. The synchronization
overhead can be reduced by merging the inner products together so that a single
global summing is sufficient for an iteration of the “while” loop.

The basic idea in formulating the MCGS algorithm is to merge the inner products
present in the CGS algorithm so that they can be evaluated using a single global
summing operation per iteration of the “while” loop. One way of merging the
inner products is to reformulate the algorithm so that the inner product in Line
(8) of Figure 3 can be combined with that in Line (14) of Figure 3. Let s; = Ar;,
w; = Aq;, and y; = Ap;. From Figure 3, consider Lines (5), (6), (7), and (8)

o = tilv,
= il Ap,
= f‘éfA(rn +28q, + ﬁZPnfl)
= Ty s + 208 Wy + B°E yn1 (17)
Consider Line (6) of Figure 3,
Pn = un+ B(qn + Bpn-1)
Ap, = Ar, +208Aq, + 52Apn—1
Yn = Spt 20w, + ﬁZYnfl (18)
From Line (9) of Figure 3,

qn+1 = Uy — OV,
= u, — aAp,
= u, —ay, (19)

From Lines (5), (10), and (11) of Figure 3,

Tpy1 = Tp— aA(u, + qpp1)
= TIn— a(Arn + ﬂAqn + Aqn—i-l)
= 1, — sy + Wy + Wpy1) (20)

Using the derivations given in the Equations (17), (18), (19), and (20), the CGS
algorithm of Figure 3 can be reformulated as the MCGS algorithm of Figure 6.

In the MCGS algorithm of Figure 6, the inner products are all grouped together so
that a single global summing operation (with five operands) is sufficient to evaluate
them. The number of matrix-vector multiplications in the MCGS algorithm remain
the same as the number of matrix-vector multiplications in the CGS algorithm.
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Due to the modifications, additional scalar-scalar, scalar-vector, and element-wise
vector-vector operations are performed in the MCGS algorithm compared to the
operations performed by the CGS algorithm. However, these additional operations
scale linearly with the inverse of the number of PEs.

Y-1=1; po = 0; qo = 0; wo = 0;
w_1 =0;y-1=0;r90 =b — Axp; so = Ary;
Yo = £ ro; n = F§ so;
p=rtwo; A=ty 1;p 1 =1n=0;
while ( not converged ) do
B = Tn/Yn-1; 0 =1+ P21+ AB);
a=n/0;
u, =r, + 6qn;
Yn =58n+ 2/6Wn + 62)’n71;
) qn+1 = Up — QYn;
) Wnt1 = Adpti;
) Tpyl =Tp — a(sn + Bwy + Wn+1);
) Snt1 = Arpqa;
) Xpt+1 = Xp + Oé(lln + qn+1);
) n=n+1;
) Vo =B 0n; 1) = Eisn; =T Wy A=T0yn 15 en =1 10;
) endwhile

Figure 6. The modified conjugate gradient squared (MCGS) algorithm

The following expressions for the parallel run time of the MCGS algorithm are
derived assuming a data distribution as described in the beginning of Section 5.
Table 2 shows the line by line time complexity of the MCGS algorithm. Note that
only the expressions within the while loop are considered here.

The parallel run time for the i-th iteration of the MCGS algorithm is

; 16N
t?WCGS = (10 + —)tfp + tinner(5) + thult: (21)

P

where the (10 + 16N/P)ts, term comes from Lines (6), (7), (8), (9), (10), (12),
(14), and (15), the tiuner(5) term comes from Lines (16), and the 2¢,,,: term
comes from Lines (11) and (13) of Figure 6. The number of PEs that result in
the minimum parallel execution time, Py;cgs, can be derived by solving for P in
(Othcas)/(OP) = 0.

If A has an unstructured sparsity pattern, then Equation (21) can be simplified
by substituting the value of ;e from Equation (8) and the value of ¢y for
tmut from Equation (10), giving

(24 + 4k)Ntfp

thicasa = (6ts + 10t,)VP + + 10t s, + 2Nt,, (22)
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Table 2. Line by line time complexity
of the MCGS algorithm

line number time complezity
(6) 6Lsp
(7) trp
(8) 2(N/P)tp
9) 2typ +4(N/Ptyp
(10) 2(N/P)tp
(11) lmult
(12) 5(N/P)tsp
(13) lmult
(14) 3(N/P)tp
(15) tip
(16) tinner (5)

2/3
Pyucasu = (%) (23)

Similarly, for a banded A (obtained by reordering the unstructured A) with a
bandwidth of 3, from Equations (8) and (11),

: 24 + 4k) Nt
thicass = (2ts + 10t,)VP + % + 10t s, + 45 + 26t (24)
(24 + 4k)Ntfp> 23 o5)

Pyegsy = ( P
S w

7. Comparison of the Algorithms

From the derivation of the MCGS algorithm in Section 6, it can be observed that
MCGS and CGS are basically the same algorithms, but with a different comput-
ing sequence. Because both algorithms are doing exactly the same calculations,
they are numerically equivalent, unless rounding-off errors create a difference. The
experimental results presented in Section 8 further support this claim.

Reordering the matrix A for bandwidth reduction reduces the time taken for
the matrix-vector multiplication operation, but the time for the other operations
remains almost the same. Therefore, reordering the A matrix reduces the total
execution time. Because the total execution time for the banded A matrix is lower
than the execution time for the unstructured A matrix case, the inner product op-
eration contributes a bigger percentage towards the overall execution time. Hence,
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the reduction in the global synchronization overhead is likely to have a more sig-
nificant impact for banded A matrices.

Because MCGS and CGS take the same number of iterations to converge, the
parallel run time of the algorithms can be compared using the time taken per
iteration of the algorithm, i.e., for MCGS to perform better than CGS, t; ¢g
should be less than ’%Gs- Consider the case where A is banded with a bandwidth
B and ts > t,, so the t, term can be ignored. Using the expressions derived in
Equations (15) and (24) for t&,,¢ , and 4,0, respectively, for MCGS to perform
better than CGS

2/3
P> (%) for ty > tw. (26)

Let tmin o , and t%¥% , be the minimum parallel execution times for the MCGS
and CGS algorithms, respectively. The value of Pogs_p can be substituted from
Equation (16) into Equation (15) to obtain the following expression for tJ& ,:

(17 +4k)Nt,\ 1

tmin, (4ts + 6ty,)

Pcasp + = 5 <
+3t7, + 4t + 26ty
= (6ts +9tw)V Poas.y + 3tpp + 4t + 261, (27)

Similarly, Equations (24) and (25) can be used to derive the expression for 74 ;:

(24 + 4k)Ntfp> 1 ]
ts + 5ty Proasp

sy = (2ts +10ty) |/ Puccss + = 5 <
+10p, + 4t + 2Bty
(3ts + 15tw)\/ Pycocas p + 10tfp + 4ts + 20ty (28)

For distributed memory MIMD machines, where t5 > t,,, from Equations (27) and
(28), tmin, | and t74%.< , can be approximated as follows:

t8ds, = 6tsy/Poas.s (29)
Vdass = 3tsV/Pucasos (30)

thcass _ 3 [Pucess
tming Poasp

3

6

1 [(24 4 4k)Ntpp(2t, + 3t,)]"°

5[ ts + 5ty 17+4k)Ntfp}
N ( (24 + 4k)

1/3
17+4k> = 0.66 for k =8 (31)
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Hence, the best MCGS timing is approximately up to 34% better than the best
CGS timing. The variation of the ratio ¢7/% . , /tmi% , with the value of k is shown
in Figure 7. Also, for the assumptions stated, Equation (26) provides the machine
size (in number of PEs) above which MCGS performs better than CGS. This can
be used to automatically select an algorithm (either CGS or MCGS) depending on
N, P, typ, and t, [13, 18].

This approach will allow heterogeneous computing management systems [9] to
adaptively select the best algorithm to use from a set of algorithms. In this case,
the problem size (V) is fixed, but the values of P, ts, and ty, can vary depending
on the machine that is selected for executing the solver. For the heterogeneous
computing management systems to make the best decision, it is necessary to provide
information such as that in Equation (26) to the management systems.

0.70 T T T T T T T

0.68 - i
0.66 \_
0.64 | -

0.62 - |

best timings ratio for MCGS/CGS

0.60 | | | | | | | |
6 8 10 12 14 16 18 20 22 24
number of non-zeros per row of A

Figure 7. Variation of the tﬁigc:s_b/tg(i;ns_b ratio with the value of k

8. Numerical Experiments and Discussion

Experiments were conducted on up to 128-nodes of the Purdue mesh-connected
Intel Paragon XP/S [2] and up to 16 thin nodes of the Purdue multistage net-
work connected IBM SP2 [1, 2, 16]. The algorithms were implemented on the
Paragon using C and NX message passing library routines. The algorithms were
implemented on the IBM SP2 using C and message passing interface (MPI) li-
brary routines. The global summing operations are performed using the recursive
doubling routines provided by the NX and MPI libraries.

The timings varied slightly (less than five percent) between trials. This is due to
cache misses, background network traffic, and possibly other factors. The minimum
of the timing values was taken as the representative value, because the minimum
occurs when the impact due to external factors is minimal.

Two electromagnetic scattering matrices were used in the experiments reported in
this section. The bigger matrix that is referred to as A; is 36818-by-36818 and the
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smaller one that is referred to as A, is 2075-by-2075. A; is for a 5\ radius circular
computation domain, a rectangular 6 x 0.1\ perfect conductor scatterer, and TM
polarization with an incidence angle of 45° with respect to the plate normal. As is
for an incident angle of 270°. Each matrix was reordered to form a banded matrix
by a reverse Cuthill-McKee algorithm [6], obtaining two more matrices Ay, and
Asy, where Aqp is from A; and Aoy is from As. The sparsity pattern of A; is
shown in Figure 8 and Aj; is shown in Figure 9. The thick straight line shown in
Figure 9 denotes a band that contains all the non-zero elements of the reordered A
matrix. The timings for the reordering phase are not reported here, because these
timings do not affect the CGS versus MCGS comparison.

x 10

25f : — 1

0 0.5 1 1.5 2 25 3 3.5
nz = 255406 x 10*

Figure 8. Sparsity pattern of test matrix A;, N = 36818.

The execution time of the CGS algorithm is dependent on the time taken for the
basic operations: matrix-vector multiplication (referred as matvec), inner-products
(referred as innerprod), element-wise vector-vector operations, scalar-vector oper-
ations, and scalar-scalar operations. The last three do not involve inter-PE com-
munication (i.e., each PE executes them independently) and will be collectively
referred to as indops. Thus, there are three categories to be considered: matvec,
innerprod, and indops. To get a better understanding of the variation in the
performance with the number of PEs, the timings were measured separately for
innerprod, matvec, and indops. Figure 10 shows the three timing curves corre-
sponding to innerprod time, matvec time, and indops time for the Paragon.
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x 10

0.5r 1

3.5 i

0o 05 1 15 2 25 3 35
nz = 255406 x10°

Figure 9. Sparsity pattern of test matrix A, obtained by reordering A; using the reverse Cuthill-
McKee algorithm.

The innerprod time includes the time needed to compute the local product terms
and the time needed to sum the local products. The computation time for the local
products decreases with increasing P, whereas the global summing time increases
with increasing P. Likewise, the matvec time includes the time to do the multi-
plications and additions and the inter-PE communication time needed to retrieve
remote vector values. From Figure 10 it can be noted that the timing for matvec
decreases with increasing P. This is due to the decrease in the computation time
associated with the matvec operation. Similarly, the time for the indops decreases
with increasing number of PEs.

For the larger matrix (A;) and 4 < P < 16, the indops time is the dominant
component of the total execution time. Therefore, any optimizations done for
the innerprod and matvec times will not have a significant impact on the overall
execution time. However, as the number of PEs are increased the indops time
decreases and at 128 PEs the innerprod and matvec times are nearly as same as
the indops time. Reordering the matrix A; has a reducing effect on the matvec
time, as shown in Figure 11 for the Paragon. The indops and innerprod times are
independent of the reordering. The overall execution time of the CGS algorithm is
reduced, due to the reordering of A for bandwidth reduction. For the bandwidth-
reduced A, innerprod time forms a higher percentage of the overall execution
time compared to the situation where matrix A is unstructured. Therefore, the
optimizations towards reducing the innerprod are likely to have a relatively high
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impact on the overall execution time when the matrix A is reordered for bandwidth
reduction.

2500 . ' ' ' I
innerprod —
matvec ----
2000 indops - T
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Figure 10. Independent components of the total execution time for CGS on the Intel Paragon for
A;.
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Figure 11. Independent components of the total execution time for CGS on the Intel Paragon for
Aqy.

From the discussion of MCGS in Section 6, it is evident that the modifications
performed in merging one inner product with the other one in the CGS algorithm
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to formulate the MCGS algorithm has introduced additional element-wise vector
operations, vector-scalar, scalar-scalar operations (i.e., indops forms a higher per-
centage of the total number of operations performed by the MCGS algorithm com-
pared to the indops performed by the CGS algorithm). For smaller P and larger
N values, the indops time dominates the other two components, innerprod and
matvec. Therefore, for smaller P and larger N values, MCGS takes more time
than the CGS algorithm, as shown in Figure 12 with A, for the Paragon. As P is
increased MCGS starts to perform better. The same comparison is shown for Ay,
in Figure 13. The experimentally derived difference of 20% confirms a significant
improvement using MCGS for this set of parameters.

Equation (26) is used to predict the value of P*, where P* is the number of PEs
beyond which the MCGS algorithm should outperform the CGS algorithm. The
values of N, P, t,, and ts, are needed to predict the value of P*. To determine
the value of t,, small code segments with floating-point operations were executed
on the Paragon and the executions were timed. From the experiments, the value
of ty, was found to be equal to 1.078 x 107¢ seconds. The value of ¢, determined
by these experiments do not include any loop or other integer operation overhead.
However, the time delays incurred by cache misses are included in the measured
value of ty,,.

The value of t; is measured by an echo server experiment, as shown in Figure
14. In the echo server experiment, two PEs which are adjacent to each other are
selected. One PE runs the echo server, which is a program that retransmits what-
ever it receives back to the sending PE. The other PE in the experiment executes
the testing program. The testing program turns on a timer and sends a zero-length
message to the PE that runs the echo server. Once the testing PE receives the reply
back from the echo server, the timer is stopped and the elapsed time is measured.
The elapsed time is equal to two times the message setup overhead, i.e., 2t,. The
value of t; was determined as 112 ps from the echo server experiment for the Intel
Paragon. For the Paragon, using the values of ¢, and ¢, determined by the above
experiments, the value of P* is estimated by Equation (26) to be 115 for Ay, and
17 for Agb.

In Figure 15, the MCGS algorithm is compared with the CGS algorithm on the
IBM SP2 for As,. The PEs in the SP2 are faster and have larger cache memory
than the PEs in the Paragon, and the SP2 has a relatively smaller ¢, /t, ratio than
the Paragon. Therefore, in the SP2, the MCGS algorithm is the better algorithm
for even smaller number of PEs, as compared to the Intel Paragon. A complexity
analysis of the algorithms was not performed for the SP2 machine, because only
empirically derived communication models are available for the SP2 [19, 20]. From
Figure 16, it can be observed that for matrix A, that CGS outperforms MCGS,
however, as the number of PEs are increased the performance gap between the
MCGS and CGS decreases. At a sufficiently large P, the MCGS algorithm should
perform better than the CGS algorithm for larger matrices (e.g., A1p) as it did for
smaller matrices (e.g., Aap).
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Figure 12. Execution time of CGS versus MCGS for A, on the Paragon.
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Figure 13. Execution time of CGS versus MCGS for Ay, on the Paragon.
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Figure 14. The PE configuration for the echo server experiment.
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Figure 15. Execution time of CGS versus MCGS for Ay, on the SP2.
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Figure 16. Execution time of CGS versus MCGS for A, on the SP2.
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9. Conclusions

A reformulation of the CGS algorithm called the MCGS is presented in this paper.
The system of linear equations obtained from finite element modeling of open-region
electromagnetic problems was solved using the CGS and MCGS algorithms. This
work examined ways of reducing the communication and synchronization overhead
associated with implementing the CGS algorithm on MIMD parallel machines.

An experimental and theoretical complexity analysis was performed to evaluate
the performance benefits. The approximate complexity analysis of the CGS and
MCGS algorithms on a mesh-based multiprocessor model estimates that the per-
formance of the MCGS algorithm may be up to 34% better than the performance
of the CGS algorithm, depending on the machine architecture. The experimental
results obtained from a 128-processor Intel Paragon show that the performance of
the MCGS algorithm is at least 20% better than the performance of the CGS algo-
rithm for a 2075 x 2075 sparse matrix. The experimental results on the IBM SP2
indicate that the MCGS is the better algorithm for the 2075 x 2075 sparse matrix
and the CGS algorithm is the better algorithm for the 36818 x 36818 sparse matrix.
The MCGS can be expected to be the better algorithm for the larger matrix as the
number of PEs increases. Any optimization or preconditioning that is used on CGS
to reduce the overall computation time can be used on MCGS as well. The tech-
niques used here to reduce the synchronization overhead of CGS can be extended
to other nonsymmetric Krylov methods, such as the BICGSTAB algorithm [17].

Because MCGS is not the best method for all situations, the use of a set of al-
gorithms approach is proposed. In the set of algorithms approach, either CGS or
MCGS is selected depending on the values of N and P. The set approach pro-
vides an algorithm that is more scalable than either the CGS or MCGS algorithms
alone. Conditions such as the one developed here to choose between CGS or MCGS
depending on the system parameters are also useful in the area of HC mapping sys-
tems [9]. In HC mapping, the input data (e.g., matrix size) remains fixed, but the
system parameters are varied, i.e., the mapping system estimates the performance
on different machines and executes the application on the machine that is expected
to yield the best performance. To obtain the best mapping, it is necessary for the
HC mapping systems to have information such as those provided by the conditions
to select either MCGS or CGS depending on system parameters.
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